On the Effects of Illumination Normalization with LBP-Based Watchlist Screening
نویسندگان
چکیده
Still-to-video face recognition (FR) is an important function in several video surveillance applications like watchlist screening, where faces captured over a network of video cameras are matched against reference stills belonging to target individuals. Screening of faces against a watchlist is a challenging problem due to variations in capturing conditions (e.g., pose and illumination), to camera inter-operability, and to the limited number of reference stills. In holistic approaches to FR, Local Binary Pattern (LBP) descriptors are often considered to represent facial captures and reference stills. Despite their efficiency, LBP descriptors are known as being sensitive to illumination changes. In this paper, the performance of still-to-video FR is compared when different passive illumination normalization techniques are applied prior to LBP feature extraction. This study focuses on representative retinex, self-quotient, diffusion, filtering, means de-noising, retina, wavelet and frequency-based techniques that are suitable for fast and accurate face screening. Experimental results obtained with videos from the Chokepoint dataset indicate that, although Multi-Scale Weberfaces and Tan and Triggs techniques tend to outperform others, the benefits of these techniques varies considerably according to the individual and illumination conditions. Results suggest that a combination of these techniques should be selected dynamically based on changing capture conditions.
منابع مشابه
بهبود محلی کیفیت تصاویر چهره با سایه شدید به منظور ارتقاء شناسایی
Varying illuminations, especially the side lighting effects in face images, is one of the major obstacles in face recognition systems. Various methods have been presented for face recognition under different lighting conditions witch require previous knowledge about Light source and shadow area. In this paper, a novel approach based on H-minima transform to image segmentation and illumination n...
متن کاملAn Illumination Invariant Texture Based Face Recognition
Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equal...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملIllumination compensation and normalization in eigenspace-based face recognition: A comparative study of different pre-processing approaches
The aim of this work is to investigate illumination compensation and normalization in eigenspace-based face recognition by carrying out an independent comparative study among several pre-processing algorithms. This research is motivated by the lack of direct and detailed comparisons of those algorithms in equal working conditions. The results of this comparative study intend to be a guide for t...
متن کاملImage Enhancement via Reducing Impairment Effects on Image Components
In this paper, a new approach is presented for improving image quality. It provides a new outlook on how to apply the enhancment methods on images. Image enhancement techniques may deal with the illumination, resolution, or distribution of pixels values. Issues such as the illumination of the scene and reflectance of objects affect on image captures. Generally, the pixels value of an image is ...
متن کامل